Топ-100 Гравитационное линзирование

Гравитационная линза

Невероятные возможности

Телескоп ТМТ в представлении художника Эволюция телескопов привела нас к созданию гигантов с диаметром 30 метров и фокусным расстоянием почти полкилометра (таким будет строящийся великан ТМТ). Но природа уже создала гигантские оптические системы, нам надо только грамотно их использовать. Невозможно построить телескоп размером с Солнечную систему, да и незачем, ведь он уже существует!

Еще в 1912 году гениальный Эйнштейн предсказал, что гравитация массивного тела будет искривлять световые лучи. В 1935 году чешский инженер Мандл в своем письме Эйнштейну высказал предположение, что близкие к нам звезды могут искажать свет более далеких звезд, создавая эффект гравитационной линзы. В своем ответе, опубликованном в журнале Science в 1936 году, Эйнштейн согласился с существованием такого явления, но выразил сомнение в возможности его использования.

Кольца Эйнштейна

Снятая телескопом «Хаббл» т. н. «космическая подковаruen» — гигантская эллиптическая галактика на z=0,45, линзирующая карликовую галактику на z=2,38В 1970 году группой астрономов в обсерватории Китт-Пик в Аризоне был обнаружен двойной квазар QSO 0957+561 A/B, компоненты которого были расположены очень близко и были похожи по характеристикам. При более подробном изучении оказалось, что это один и тот же объект, изображение которого раздвоено гравитационным линзированием далекой галактики. В 1987 году астрономом Жаклин Хьюит с помощью радиотелескопа было впервые зарегистрировано изображение далекого источника сигнала, гравитационным линзированием превращенное в так называемое кольцо Эйнштейна. На сегодняшний день открыто множество гравитационных линз, превращающих далекие объекты в кольца, двойные кольца и их фрагменты.

Гравитационная линза Солнца

Хотя все открытые на сегодняшний день гравитационные линзы во вселенной – галактики, звезды тоже могут сыграть такую роль. Ближайшая точка гравитационного фокуса нашей звезды (откуда вокруг Солнца можно увидеть кольцо Эйнштейна), расположена от него в 550 астрономических единицах (1 а. е. это среднее расстояние от Земли до Солнца). Концепция космического аппарата, который сможет добраться до гравиационного фокуса Солнца, была предложена еще в 1979 году Воном Эшлеманом из Стэнфордского университета, позже эта идея неоднократно рассматривалась многими известными учеными. В 190-х годах эта идея получила второе дыхание благодаря итальянскому астроному Клаудио Макконе, предложившему проект FOCAL (Fast Outgoing Cyclopean Astronomical Lens), цель которого – отправить космический аппарат к гравитационному фокусу Солнца.

Холодная реальность

Национальная обсерватория Китт-ПикВпрочем, на сегодняшний день отправка космического аппарата на такое большое расстояние – это теория. Для полета подобного аппарата в ближайшую точку гравитационного фокуса понадобится более 50 лет. Но для получения качественного изображения нужно забраться еще дальше, чтобы не получить помехи от солнечной короны. Но это только начало проблем, ведь возникнут большие трудности с наведением оптики. Для поворота такого телескопа даже на один градус, космический аппарат нужно переместить на 10 а. е., что составляет расстояние от Земли до Сатурна. В реальности подобную систему можно применять для наблюдения только одного, заранее выбранного объекта, например, экзопланеты.

Впрочем, размер изображения планеты величиной с Землю на расстоянии около десяти световых лет в фокальной плоскости составляет многие километры.

Один вместо тысяч

Изображение далекой планеты с помощью гравитационного линзирования Солнцем представляется нам в виде кольца Эйнштейна. При этом точка точно на оптической оси отображается во внутреннюю окружность. Любая другая точка отображается дважды (зеркально) — внутри и снаружи центрального круга кольца. Существует зеркальная неопределенность (невозможно отличить «лево» от «право»), но ее можно преодолеть, если точек наблюдения много. Само кольцо довольно узкое (2,5 угловой секунды на расстоянии 550 а.е.), но современные телескопы позволяют рассмотреть такую картинку.Возможности, которые открывает доступ к гравитационной линзе Солнца, очень велики. Подобный способ позволит получать детализированные изображения далеких звезд и галактик, для которых понадобились бы мощности тысяч обычных телескопов

Клаудио Макконе, руководитель направления космических научных исследований Международной академии астронавтики (IAA) и председатель постоянного комитета IAA по SETI (поиску внеземного разума): «Где бы в космосе ни были разумные существа вроде нас, они будут стремиться исследовать Вселенную. И они, и мы хотим пролить свет на самые дальние уголки космоса. Для этой цели мы строим все более мощные телескопы различных типов. Но по мере накопления знаний любая цивилизация начинает понимать, что природой дан ей великий дар: линза столь мощная, что никакая приемлемая технология не способна повторить ее или превзойти. Эта линза - звезда цивилизации, в нашем случае - Солнце. Гравитация любой звезды искривляет пространство, влияя на траекторию любой частицы или волны таким образом, что создает изображение объекта, как это делают знакомые нам обычные линзы».